ケーブリング・クロニクル

イーサネットケーブルのカテゴリの説明:簡潔な履歴:

Millennials who entered the workforce between 2003 and 2016 are accustomed to the digital era: high-speed internet access, smartphones, online everything. And while they’ve definitely experienced advancements in technology during their lifetime, they may not be aware of just how far copper Ethernet cabling has come to make it all possible. We thought we’d start off 2022 with a little Ethernet history lesson for the younger generation and a walk down memory lane for those of us that have been in the industry a bit longer than we’d like to admit.

2022 年 2 月 24 日

SFP トランシーバーとネットワークケーブルをテストする方法

Recently we have been getting questions about how to determine if an SFP (Small Form-factor Pluggable) transceiver is working. We refer to SFP generically here to represent a multitude of the various optical modules that are available. Fluke Networks fiber testers can be used to measure the light that is being put out by an SFP.

2022 年 1 月 21 日

今日のファイバー検査に最適な光ファイバースコープの選択

Contaminated connections remain the number one cause of fiber related problems and failures in data centers, campus, and other enterprise or telecom networking environments. But it’s not enough to just clean every fiber end face—there is no way to know if the end face is clean unless you inspect it.

 

2022 年 1 月 4 日

ファイバー vs. 銅線から Edgeへ:ファイバーがスマートで持続可能な建物の選択肢として成長している理由

For years, we’ve heard about FTTX making its way into the horizontal LAN — fiber to the desktop, fiber to the office, fiber to the enclosure, fiber to the zone, etc. Often referred to as “fiber to the edge” or FTTE, most of these deployments have traditionally been for high-security government environments or specialty applications or devices. Now, as bandwidth requirements continue to increase and the commercial real estate industry is trending towards smarter and more sustainable buildings, the question of using fiber vs. copper is more relevant.

2021 年 12 月 8 日

What You Need to Know to Choose a PoE Tester

2021 年 12 月 1 日

光ファイバ・ケーブルとテスターは 400G イーサネットに対応していますか?

Driven by large hyperscale and cloud data center providers, advancements in signaling and transceiver technology have led to the development of next-generation transmission speeds. There are now multiple options available for 400G Ethernet applications over multimode and single-mode fiber with more on the horizon. And it doesn’t stop there—big players like Google, Facebook, and Microsoft are driving innovation to support 800 Gig and 1.6 Terabit applications, and the IEEE Beyond 400 Gig Ethernet Study Group is already defining objectives.

2021 年 9 月 28 日

挿入損失

What is Insertion Loss?

Insertion loss is the amount of energy that a signal loses as it travels along a cable link. It is a natural phenomenon that occurs for any type of transmission—whether it's electricity or data. This reduction of signal, also called attenuation, is directly related to the length of a cable—the longer the cable, the greater the insertion loss. Insertion loss is also caused by any connection points along a cable link (i.e., connectors and splices).

Insertion Loss Formula

2021 年 8 月 25 日

メタル LC コネクター:ファイバー・テスト基準コードでの壊れたラッチに別れを告げる

虽然根据所使用的组件类型,有许多不同类型的光纤连接器,但LC连接器已广泛应用于整个网络行业。

塑料LC连接器

塑料连接器用于插入后很少反复插拔的连接时,效果会很好。但是,当需要反复建立和断开连接,例如使用光纤测试参考跳线时,外壳上的柔性锁扣经常会因为反复弯曲而断裂。

ラッチ部で破損したプラスチック LC コネクター

塑料LC连接器上损坏的锁扣示例

 

2021 年 8 月 23 日

PoE負荷試験: PoEシステムの高度なトラブルシューティング

Since the original IEEE 802.3af Type 1 power over Ethernet (PoE) standard that delivered up to 15.4 Watts (W) was first introduced in 2003, the technology has evolved to include Type 2 (up to 30 W), Type 3 (up to 60 W), and Type 4 (up to 90 W). That means PoE voltage now supports everything from phones, Wi-Fi access points, and surveillance cameras, to laptops, digital displays, and even facility-wide LED lighting—all requiring various levels of PoE power.

2021 年 7 月 27 日